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Abstract

Starting from a kinetically foldable criterion for designing fast-folding structures, we have investigated the foldabilities of all possible

sequences coded in two letters through an exhaustive enumeration of model chains of a 16-mer protein that we performed using a simple off-lattice

model. From a set of 32,896 sequences, we found only 145 sequences that were foldable. Through a comparison of the geometrical similarities of

those foldable sequences, we reduced the corresponding 145 native structures to a structural set of 69 good candidates for target structures in the de

novo design of fast-folding sequences. We make the following conclusions: (1) a preferred proportion of compositions exist for sequence design.

(2) Foldable sequences having different numbers of hydrophobic residues possess very similar sequences. (3) The stability of some special

structures toward mutations may be the origin of common protein structures; our results demonstrate that the presence of hydrophobic residues in

certain positions of a sequence can result in firm and mutation-resistant skeletons. It appears that a simple, but robust, chain topology and

structural symmetry lead to high designability.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Studies of the de novo design of proteins, which is an

inverse protein folding problem, have attracted considerable

attention both experimentally and theoretically for many years,

and much progress is being made [1–9]. Generally, a suitable

predetermined structure should be selected as a target structure

at the very beginning of de novo sequence design [4]. The

target structure should be appropriate for design; that is, it

should somewhat resemble naturally occurring proteins. It may

not be possible to find sequences that can fold into any arbitrary

compact structure because it seems that the number of naturally

occurring protein fold families may be finite [10–12]. That is to

say, Nature may employ a somewhat limited set of functional

proteins such that many different sequences share common

folds. Jones and Thornton [13] have demonstrated that certain

‘super folds’ dominate the current structural databases.

Goldstein and coworkers [14] have explained this finding by

using the energy landscape theory. It remains an open problem

as to why some certain folds are so common. Several authors

have proposed possible physical mechanisms behind Nature’s
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selection of protein folds. Finkelstein and coworkers [15–17]

have argued that certain motifs are easier to stabilize and, thus,

are more common either because they have lower energies or

because they have unusual energy spectra over random

sequences. Yue and Dill [18] have demonstrated that protein-

like folds are associated with sequences that have a minimal

number of degenerate lowest-energy states. Goldstein et al.

[19,20] stated that the robustness of proteins to site mutations

results from population dynamics during the evolutionary

process. Recently, Chan and coworkers [21,22] demonstrated

that evolutionary populations depend greatly on the topologies

of proteins.

The exhaustive enumeration method is a well known,

simple—but formidable—tool for studying protein folding

problems; Tang and coworkers [23–25] and several other

groups [26–28] have obtained fruitful results using this

approach. Tang and coworkers studied the designabilities,

which are measured by the number of sequences that can be

designed for the structure, of all the compact conformations for

a 27-monomer chain in a 3!3!3 lattice [23]. The authors

suggest that a structure is designable with certain sequences

when they have their non-degenerate lowest energy at the

target structure. From their analysis, they observed that some

structures are more designable than others. Such highly

designable structures possess ‘protein-like’ secondary struc-

tures and even tertiary symmetries and they are thermo-

dynamically more stable than other structures. Broglia
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and Tiana [29] argued that the analysis reported by Tang and

coworkers [23] had two basic problems. Firstly, sequences

composed of only two kinds of residues are not very suitable

for mimicking real proteins; secondly, only fully compact

conformations were enumerated. Based on a lattice model

using a ‘hydrophobic’ energy function, de Araujo [30] also

pointed out that maximally compact structures might not be the

most designable structures in which monomers occupy

completely buried or completely exposed positions. For the

first problem, recent work [24] by Tang and coworkers used the

Miyazawa–Jernigan (MJ) matrix to provide a good qualitative

agreement between the two-letter HP model and a 20-letter

model. The authors studied an off-lattice model to investigate

the designabilities of all possible conformations for a 23-

monomer chain in a discrete off-lattice space [25] to avoid the

ambiguity deriving from the second problem: they reached

similar conclusions.

Following Bryngleson and Wolynes [31,32], a number of

other simulations [33–36] have explored the dynamics of

protein folding. As demonstrated by Wolynes et al. [37],

natural proteins are both thermodynamically and kinetically

foldable. The definition of design provided by Tang and

coworkers [23–25], however, states that a structure is

designable with certain sequences when its non-degenerate

lowest energy form is the target structure. We argue that the

target structure designed according to this criterion of

designability should be thermodynamically designable, but

not necessary kinetically designable, because kinetically

foldable sequences constitute only a subset of thermodynami-

cally foldable sequences [37]. Based on a lattice model, Du and

coworkers [38] demonstrated that a collapsed chain exhibits

ergodicity breaking, in which the disjoint regions of phase

space do not arise uniformly, but instead as small chambers

whose number increases exponentially with respect to the

polymer density. A chain would be frustrated in finding the

native state when a chain collapses near the glass temperature.

Herein, we present an alternative criterion of foldability/

designability that considers the requirement for kinetic

designability. Our model should be more general because

there are no rigid restrictions on conformations (e.g. discrete or

dihedral angles), which, therefore, creates a continuous

conformational space. A sequence can be considered foldable

when the chain can fold into a target structure with a significant

statistical probability (e.g. 0.8), starting from an arbitrary

initialized conformation during an appointed finite time. The

corresponding target structure is deemed designable. We argue

that fast-folding sequences can, at least, be obtained when

using this design procedure and employing the new criterion.

We performed an exhaustive enumeration to obtain all 32,896

possible sequences of a 16-monomer chain coded by two letters

and have checked their foldabilities with our fast-fold criterion.

Details of the foldability calculations for certain sequences are

provided below. A thorough analysis of the relationships

among those foldable sequences and designable structures

leads us to a conclusion that is essentially coincident with that

of Tang and coworkers [25].
2. Model and algorithms

The conformation of a chain made up of n beads is defined

by n coordinates (r1, r2,.,rn) of beads in a three-dimensional

space. Each bead may represent one Ca atom of an amino acid.

The total internal energy is a sum of the Lennard–Jones (LJ)

potential between non-bonded beads and the harmonic spring

potential between bonded beads, respectively. The system has

a Hamiltonian of
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The first term is the contribution of the LJ potential

between non-bonded beads; the latter is contributed by the

energies of the fluctuation of nK1 bonds in the n-mer.

According to the protein data bank (PDB), the mean distance

between two neighboring Ca atoms in a protein chain is r0Z
3.8 Å. In our model, each randomly selected residue on the

chain is allowed to move around its position [39] with bond

fluctuation restricted to between ri,iC1Z3.7 and 3.9 Å. In our

model, sequences are coded by two kinds of residues, labeled

by H and P, which are similar to the hydrophobic and polar

residues in the HP model [23]. The coefficient hsisj in the LJ

potential term reflects the interaction between residues si and

sj and can be expressed in a 2!2 interaction matrix, having

hHHZ40, hHPZhPHZ20, and hPPZ5, following the choices

suggested by Clementi et al. [40] for the interactions among

four types of amino acids. We chose the parameters hHHZ40

and hPPZ5 to ensure that stronger interactions exist between

hydrophobic beads and relatively weaker interactions between

hydrophilic beads. The term s is determined from the

requirement that the average number of Ca–Ca contacts for

each amino acid roughly equals the respective number

obtained using the all-atom definition of contacts. We set

sZ6.5 Å to ensure that a strong interaction occurs between

two monomers when their inter-monomer distance is below

9 Å. We assigned a value of 20.0 to the constant k.

For tractability in computation, we exhaustively enumer-

ated in sequence space a chain of 16 residues coded by two

letters, H and P. From a consideration of symmetry, we

eliminated those sequences that were redundant. All of the

sequences we obtained were checked for their foldabilities. In

this present study, we did not introduce any prior determined

target structure. We applied a simulated annealing algorithm

to determine the lowest-energy conformation, starting from

50 different initialized conformations and various random

numbers. We made comparisons between all of these 50

conformations. The root-mean-square coordinate deviation,
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was calculated to characterize the degree of similarity

between the geometries of two conformations, which we

considered to be the same if D was below 0.25 Å, which is a

much more rigid requirement than the experimental resol-

ution. Assuming the number of conformations that share a

certain structure, labeled *, is nf., we define the sequence for

structure * to be foldable if nf is not less than 40 (i.e. its

probability is higher than 80%); otherwise, we do not

consider it to be foldable. We believe that although the

number of individual samples, the threshold number for the

criterion of a foldable chain, the time span of the simulated

annealing run, and even the parameters in the simulated

annealing, are all set arbitrarily, they do not alter our final

results significantly; essentially, our conclusion should be

valid if some parameters are changed within a reasonable

range because we used the same parameters to study all of the

sequences. In this study, we began our simulations of

simulated annealing at a temperature TZ100; the system

reached equilibrium after 5000 steps/bead during a continu-

ous cooling process in which the temperature was lowered

each time by a factor of 0.90. The simulations were run until

the temperature had decreased to below 10K7, which requires

106 MC steps during the entire simulated annealing span. We

classify the foldable sequences as fast-folding if the checked

chains converge at same conformation during this time, but

they are considered not foldable, or at least not fast-folding, if

they fail to converge to certain conformations.

3. Results and discussions

In total, there are 32,896 possible sequences into which a

16-mer chain can be coded using two letters. We investigated

the foldabilities of these sequences; they are listed in Table 1.

As expected, the balance of hydrophobic and hydrophilic

residues on a protein chain plays a significant role in

determining the foldabilities of the protein chains. There

should be an optimal component, which guarantee a protein’s

junctions, in naturally occurring proteins. Table 1 displays

that the optimal proportion of hydrophobic residues—i.e.

where the largest foldable sequence number is found—is nH/

npZ6/10. Having more or fewer hydrophobic residues in the

chain leads to a decrease in foldability. Several groups [41,42]

have observed that incorporating too many or too few

hydrophobic residues results in a failure to design protein-

like sequences.

As shown by Shakhnovich et al. [43], the residues that are

involved in nucleus formation during protein folding are

widely conserved during Nature’s selection process. Different

proteins should have many of the same segments in common

along their sequences. Trinquier et al. [44] reached a similar

conclusion based on their use of a lattice chain model. On the

other hand, as various new sequences emerge (as a result of

mutation), only the very few whose folding provides some

certain physiological function are reserved. We can consider

that mutations create protein sequence candidates based on a

limited number of existing protein sequences and that natural

selection acts as a quality auditor to guarantee that they have a
special function. We found a trace of mutation design during

the analysis of foldable sequences having various compositions

of hydrophobic (H) residues. Sequences of n monomers are

represented by an ordered set of n letters, {ai}Z{a1,.,an},

where ai stands for the monomer type, H or P, at position i

along the sequence. Sequence fitness between two sequences

can be measured by the number of different residues along a

sequence. In a simple fashion, when two sequences having m

and n hydrophobic residues, respectively, only have jmKnj

different residues along their sequences, we classify these two

sequences as fitting one another; otherwise, they do not fit. As

an illustration, consider the following four sequences:

S2a Z fP P P H P P P P P P P H P P P P g

S3a Z fP P H H P P P P P P P H P P P P g

S3b Z fP P P H P H P P P P P P H P P P g

S3c Z fP P P H P P P P P P H P H P P P g

We say that S2a and S3a fit, but S2a and S3b do not. In this

example, S3b and S3c are symmetrical and are considered the

same. Herein, we would use ‘fit’ and ‘fitness’ to mean those

sequences that are a minimal hamming distance away. Those

sequences in a fit sequence pair can be changed into their

counterparts by jmKnj point mutations. For two compositions

having H/P proportions of nHa/nPa and nHb/nPb, respectively,

their foldable sequence sets are {{ai}}nHa and {{ai}}nHb,

respectively. For nHaOnHb, we can calculate the fitness

fraction between those two sequence sets, where the sequence

{ai}* in {{ai}}nHa is considered to fit the sequence set

{{ai}}nHb if there is at least one sequence in {{ai}}nHb that fits

{ai}*; the fitness fraction between those two sets is defined as

the number of sequences in {{ai}}nHa that fit {{ai}}nHb
divided by the element number in {{ai}}nHa. An example is

helpful in understanding this definition. The foldable sequence

sets having nH equal to 2 and 3 are indicated as follows:

fS2gZ

f

S2a Z fP P H P P P P P P P P P H P P P g;

S2b Z fP P P H P P P P P P P H P P P P g

g

fS3gZ

f

S3a Z fP H H P P P P P P P P H P P P P g;

S3b Z fP P H H P P P P P P P H P P P P g;

S3c Z fP P P H H P P P P P P H P P P P g;

S3d Z fP P P H H P P P P P P P H P P P g;

S3e Z fP P P P H H P P P P P P H P P P g

g

To calculate the fitness between {S3} and {S2}, we must check

how many sequences in {S3} fit {S2}. In our example, S3b and

S3c both fit S2b. Namely, they can be obtained by a single

mutation starting from S2b. Sequences S3d and S3e also fit S2b
when symmetry is considered. Sequence S3a does not fit either



Table 2

The fitness between foldable sequences sets having various numbers of H residues, presented in a matrix style

nH nH

2 3 4 5 6 7 8 9 10 11

2 0.80 0.59 0.87 1.00 1.00 1.00 1.00 1.00 1.00

3 0.50 0.47 0.71 0.88 0.93 1.00 1.00 1.00 1.00

4 1.00 0.80 0.65 0.83 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 0.67 0.76 0.93 1.00 1.00 1.00 1.00

6 1.00 1.00 0.73 0.68 0.71 1.00 1.00 1.00 1.00

7 1.00 1.00 0.73 0.71 0.57 0.55 0.83 1.00 1.00

8 1.00 1.00 0.87 0.81 0.63 0.43 0.83 1.00 1.00

9 1.00 1.00 0.80 0.77 0.60 0.39 0.28 0.50 1.00

10 1.00 1.00 0.87 0.81 0.68 0.57 0.78 0.17 1.00

11 1.00 1.00 0.73 0.65 0.45 0.61 0.33 0.17 0.33

The fitness in the upper diagonal represents the possibility of designing a fast fold starting from foldable sequences having fewer H residues and proceeding to more

H units through mutations; that in the lower diagonal corresponds to the reverse process, i.e. starting from foldable sequences having more H residues and proceeding

to fewer H units. The term nH represents the number of H residues in the 16-mer.

Table 1

The number of sequences obtained through exhaustive enumeration for various H/P proportions and the number of foldable sequences by our designability criterion

nH/nP 0/16 1/15 2/14 3/13 4/12 5/11 6/10 7/9 8/8

ns 1 8 64 280 924 2184 4032 5720 6470

nd 0 0 2 5 15 31 40 28 18

nH/nP 16/0 15/1 14/2 13/3 12/4 11/5 10/6 9/7

ns 1 8 64 280 924 2184 4032 5720

nd 0 0 0 0 0 1 3 6

Rows nH/nP, ns, and nd represent the H/P proportion, the number of possible sequences, and the number of foldable sequences, respectively.

Fig. 1. A sketch of the hierarchy in evolution relative to the design sequence

sets. Proceeding from the top to the bottom (from (a) to (d)), the four levels

have correspondingly increased proportions of H residues.
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S2a or S2b. The fitness between {S3} and {S2} is 0.8 because

four out of the five sequences in {S3} fit {S2}. Using this

procedure, we can conclude that the fitness between two

sequences sets, fSnHag and fSnHbg, represents the probability of

finding all foldable sequences having more H residues starting

from those foldable sequences having fewer H residues through

an iterative single point mutation of replacing one P unit with

an H residue. We stress that the requirement of fit is a very

rigorous one because we only count in the sequences that fit

others perfectly and we do not explicitly consider mutations

through crossover mutations in our calculation. On the other

hand, for nHa!nHb, the fitness indicates the possibility of the

inverse design in which H residues are replaced by P units

starting from a foldable sequence with a relatively higher

proportion of H units.

We have calculated the fitness between all possible nHa/nHb
pairs, displayed in Table 2, for both of the cases nHa!nHb and

nHaOnHb. As pointed out above, the up diagonal matrix in

Table 2 indicates the probability of a foldable sequence design,

starting from a foldable sequences set having a relatively low

proportion of H units; the down diagonal matrix represents the

opposite scenario, i.e. starting from foldable sequences having

a high H proportion. It is clear that most sequences sets have

high fitness, which means that they can be designed through a

single point mutation in a step-by-step manner or through

multiple point mutations. The mechanism thus imposed

alleviates the need for an exhaustive search in sequence

space, as pointed out by Yomo et al. [45]. Some low fitness is

suggested to derive from crossover mutation between two

residues, which we ignore in our discussion. The effect is very
significant for small values of jnHaKnHbj near the diagonal. By

comparing the two parts in Table 2, a sequence design that

starts from fewer H residues has, in the most part, a higher

probability than one starting with more H residues (the main

exceptions occur in several instances in the upper-left-hand

corner). We can comprehend this phenomenon by considering

the hierarchy sketch in Fig. 1, which does not display the

sequences that do not fit sequences in the neighboring

hierarchy. From top to bottom, some sequences lead to several

fit sequences upon increasing the number of H residues, but

others do not, which leads us to the conclusion that a design

proceeding from fewer to more H residues has a higher

probability than a design procedure occurring in the reverse

manner. For example, as indicated in Fig. 1, seven sequences in

level d can be obtained by mutation from sequences in level c;

if only the sequences in our scheme are considered, only two

out of five sequences in level c can be generated from

seven sequences in level d. The situation may be complex

when considering sequences that do not fit sequences in



Table 3

All of the foldable sequences, except for those corresponding to isolated structures

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 P P P H H H P P P P P H P P P P

P P H H H H P P P P P H P P P P

P P P H H H P P P P H H H P P P

P P H H H H P P P P P H H P P P

P P P H H P P H P P H H H P P P

P P H H H H P P P P H H P P H P

P H P H H H P P P P H H H P P P

P P H H H H P P P P H H H P P P

P P H H H H P P P P H H P H P P

P P P H H H P H P P H H H P P P

P P H P H H P H P P H H H P P P

P P H H H H H P P P H H H P P P

P P H H H H P H P P H H H P P P

P P H H H H P P P P H H H H P P

P P H H H H P P P P H H H P H P

P H P H H H P H P P H H H P P P

H P H H H H P P P P H H H H P P

H P H H H H H P P P H H H P P P

2 P P P H H P P P P P P P H P P P

P P H H H H P P P P P P H P P P

P P H H H P P P P P P P H H P P

P H P H H P P P P P P P H H P P

P P H H H P H P P P P P H H P P

P P H H H P H P P P P P H P H P

H P H H H H P P P P P P H H P P

P P H H H P H P P H P P H H P P

H P H H H H P P P P P P H P H P

3 P P P H H P P P P P P H P P P P

P H H H H H P P P P P H P P P P

P P H H H H P P H P P H P P P P

P P H H H P P P H P P H H P P P

P H H H H H P P P P P H P H P P

P P H H H H P P H P P H H P P P

P H H H H H P P H P P H H P P P

P H H H H H P P H P H H H H P P

P H H H H H P P H P H H H P H P

4 P P H H P P P P P P P H P P P P

P H H H H P P P P P P H P P P P

P H H H P P P P P P P H H P P P

P H H H P H P P P P P H H P P P

H H H H H P P P P P P H P P H P

P H H H P H P P H P P H H P P P

H H H H H P P P P P P H H P P P

5 P P P H H H P H P P P H H P P P

P P P H H P P H P H P H H P P P

P P H H H H P H P P P H H P P P

P P H H H H P H P P P H H H P P

P H P H H H P H P P P H H H P P

P P H H H H P H P H P H H H P P

H P H H H H P H P P H H H H H P

6 P P H H H P H P P P H H P P P P

P P H H P P H P P P H H H P P P

P H H H H P H P P P H H P P P P

P H H H H P H P P P H H P H P P

P H H H H P H P P H H H H P P P

P H H H H P H P P H H H H P H P

7 P P P P H H P P P P P P H P P P

P P P H H H P P P P P P H H P P

P P H P H H P P P P P P H H P P

P P P H H H H P P H P P H H P P

8 P P H H H P P P P P H H P P P P

P P H H H P H P P H H H P P P P

(continued on next page)
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Table 3 (continued)

Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P H H H H P P P P H H H H P P P

P H H H H P P P P H H H P P H P

9 P P P H H H P P P P P H H P P P

P H P H H H P P P P P H H P P P

P P H H H H H P P P P H P P P P

P H P H H H H P P P H H H H P P

10 P H P H P P P P P P P H H P P P

P P H H P P P P P P P H H P P P

P P H H P P H P P P P H H P P P

11 P P H H P P P P P P P P H H P P

H P H H P P P P P P P P H H P P

P H H H P P P P P P P P H H H P

12 P P H H H P P P P P P H H P P P

P P H H H P P P P P P H P H P P

P P H H H P H P P P P H H P P P

13 P P P H H H P P P P H H P H P P

P P P H H H P P P H P H P H P P

P H P H H H P P P P H H P H P P

14 P H H P P P P P P P P H P P P P

P H H H P P H P P P P H P P P P

15 P P H P H H P P P P P H P P P P

P P H P H H P P P P P H H P P P

16 P H H P H P P P P P P H P P P P

P H H H H P P H P P P H P P P P

17 P P P H H H H P P P P P H H P P

P P H P H H H P P P P H H H H P

18 P H H H H P P P P P H P P H P P

P H H H H P P P H P H P P H P P

19 H P H H H P P P P P H P P H P P

H P H H H P P P P H H P P H P P

20 P P P H H P P H P P P P H H H P

P H P H H H P H P P P P H H H P

21 P H P H H P H P H P P H H P P P

P H P H H H P P H P P H H P P P

22 P P H H H P P P P P H P P P P P

P P H H H P P H P H H H H P P P

From our results, 145 structures can be grouped into 22 groups and 47 isolated structures. The H residues are presented in bold; those at ‘hot’ sites involved in

forming the skeleton are rendered in italics.
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the neighboring hierarchy, but the scenario is mainly the same

in our case. The deviation at the upper-left-hand corner of

Table 2 presumably derives from the existence of many

isolated sequences for nHZ4 and 5. The origin of the difference

between the up and down diagonal matrix in Table 2 is the

emergence of some preferred sequences that lead to several

sequences in the following hierarchy having more H residues.

A more fundamental reason for this effect is explained below.

Only 145 sequences remain to fit our criterion of fast folding

and there is one corresponding conformation for each foldable

sequence. That is to say, a de novo design would fail to produce

a fast-folding structure if its pre-determined target structure is

not within the structure set comprising those 145 structures.

There is such an example presented in Ref. [46]; a de novo

design for a 16-mer chain coded in two letters failed because a

random compact conformation was selected as the target

structure. The analysis of those structures having high

foldabilities should be very instructive. To characterize the

structural and sequence behaviors of these distinct structures,

first we separated the chains into several groups according to

their geometric similarities. The chains in each group converge
to a special structure; that is to say, there exists a central

structure that is similar to one in all the other structures in the

group. We classify two structures as being identical if the D

value between the two structures is below 0.25 Å. Using this

criterion, we classified the 145 sequences into 22 groups and 47

isolated structures. It seems that the conclusion made by Tang

and coworkers [25] regarding the designabilities of different

structures—that different structures have various designabi-

lities and many protein-like sequences prefer sharing some

certain common structures—should hold in our model. Our

largest group contains 18 structures and there are at least six

structures in groups 1–6; i.e. many sequences share the same

structure in each group. Table 3 displays all of the chain

sequences in groups; all H residues have been rendered in bold.

The most intriguing observation is that almost all the sequences

in each group possess some common positions, which are

shown in italics that are occupied by H units. As an illustration,

H residues occupy three sites—positions 4, 5, and 13—in all of

the sequences in group 3. These three H residues play a crucial

role in determining the skeleton structure of the 16-mer chain;

this skeleton is so stable that it fixes the chain into the special



Fig. 2. Some typical native structures. The structures in a to d possess 18, 9, 4,

and 1 sequences, respectively. The light- and dark-grey spheres represent polar

and hydrophobic residues, respectively.
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structure presented in Fig. 2(b) when some certain H residues

are introduced. It seems that we are approaching the answer to

the question regarding the origin of those common protein

structures. For those common folds, the skeleton is very stable

to mutations and various protein-like sequences share the same

structure that emerges from the sequence’s design procedure,

charged by evolution and promoted by mutation, starting from

a sequence having that special structure as its native state. This

concept also provides some new insight into the high

probability of sequence design starting from a low proportion

of H units and replacing P with H residues.

Tang et al. [23] pointed out that structures having symmetry

possess high designabilities; other groups [47,48] have also

argued that symmetry can cause proteins to fold into their

native states quickly. In this study, we also observe symmetry

in these structures. Fig. 2 displays several typical native

structures. It should be noted that the measure of symmetry is

different from the regular symmetry elements in point group.

We found that the two sub-chain 8-mers formed by splitting a

chain at its central position possess geometric similarities,

which implies a small value ofD in their structural comparison.

The D values for the two sub-chains of the four structures in

Fig. 2(a)–(d) are 0.28, 1.27, 2.21, and 0.03 Å, respectively.

Relative to the structure in Fig. 2(a), the two structures in

Fig. 2(b) and (c) share similar topologies, but the structure in

Fig. 2(d) does not, which is supported by geometric

comparisons. In a geometric comparison using the structure

in Fig. 2(a) as a reference, the D values for the structures in

Fig. 2(b)–(d) are 1.56, 2.01, and 6.21 Å, respectively. As we

indicate in the caption to Fig. 2, upon proceeding from (a) to

(d), we observe a decrease in the number of foldable sequences

for the corresponding structures. This discussion implies that

there are complex relationships between the designabilities of

structure and symmetry. We suppose that the structures in

Fig. 2(a)–(c) exhibit twisted hairpin-like topologies, which

leads to their high designability because of its robustness

toward mutation. With a similar topology, the designability
may benefit from a higher structural symmetry, as is implied

from the comparison of the three structures in Fig. 2. Despite its

perfect symmetry, the structure in Fig. 2(d) is an isolated

example because its delicate conformation will change

significantly when mutations occur. The topology—widely

recognized as playing an important role in protein folding

[49–55]—may largely determine the designability of a

structure, which also can be improved by high symmetry.

Herein, our native structures seem to differ significantly from

those of common protein structures [11] and we believe that

these differences derive from the simple force-field that we

employed for our model.
4. Conclusions

Starting from a kinetic criterion of foldability/designability,

we investigated the foldabilities of all possible sequences

coded in two letters through an exhaustive enumeration of 16-

mers. We consider only 145 out of 32,896 sequences to be good

candidates for fast folding. The native structures of these 145

sequences converge to 69 conformations and constitute a

structure set of good candidates for target structures for de

novo fast-fold design. Based on our discussion, we reach the

following conclusions: (1) a preferred proportion of compo-

sitions exist for sequence design. (2) Foldable sequences

possessing different numbers of hydrophobic residues have

very similar sequences; this situation indicates that we can

design, through single point mutations of a known fast-folding

sequence, new fast-folding structures having different numbers

of H residues. (3) It seems that the common structures are those

that are stable against mutations; their skeletons are so robust

that structural change is small when more H residues are

introduced. It seems that a simple, but robust, chain topology

and structural symmetry will lead to high designability.
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